Copied to
clipboard

G = C22⋊C4×C22order 352 = 25·11

Direct product of C22 and C22⋊C4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C22⋊C4×C22, C24.C22, C232C44, C2.1(D4×C22), (C22×C44)⋊3C2, C222(C2×C44), (C22×C22)⋊3C4, (C22×C4)⋊1C22, C22.64(C2×D4), (C2×C22).50D4, (C2×C44)⋊11C22, (C23×C22).1C2, C2.1(C22×C44), C23.5(C2×C22), (C2×C22).70C23, C22.29(C22×C4), C22.12(D4×C11), C22.4(C22×C22), (C22×C22).24C22, (C2×C22)⋊7(C2×C4), (C2×C4)⋊3(C2×C22), SmallGroup(352,150)

Series: Derived Chief Lower central Upper central

C1C2 — C22⋊C4×C22
C1C2C22C2×C22C2×C44C11×C22⋊C4 — C22⋊C4×C22
C1C2 — C22⋊C4×C22
C1C22×C22 — C22⋊C4×C22

Generators and relations for C22⋊C4×C22
 G = < a,b,c,d | a22=b2=c2=d4=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

Subgroups: 188 in 132 conjugacy classes, 76 normal (12 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C23, C11, C22⋊C4, C22×C4, C24, C22, C22, C22, C2×C22⋊C4, C44, C2×C22, C2×C22, C2×C22, C2×C44, C2×C44, C22×C22, C22×C22, C22×C22, C11×C22⋊C4, C22×C44, C23×C22, C22⋊C4×C22
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C11, C22⋊C4, C22×C4, C2×D4, C22, C2×C22⋊C4, C44, C2×C22, C2×C44, D4×C11, C22×C22, C11×C22⋊C4, C22×C44, D4×C22, C22⋊C4×C22

Smallest permutation representation of C22⋊C4×C22
On 176 points
Generators in S176
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154)(155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)
(1 42)(2 43)(3 44)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(20 39)(21 40)(22 41)(45 153)(46 154)(47 133)(48 134)(49 135)(50 136)(51 137)(52 138)(53 139)(54 140)(55 141)(56 142)(57 143)(58 144)(59 145)(60 146)(61 147)(62 148)(63 149)(64 150)(65 151)(66 152)(67 170)(68 171)(69 172)(70 173)(71 174)(72 175)(73 176)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)(82 163)(83 164)(84 165)(85 166)(86 167)(87 168)(88 169)(89 132)(90 111)(91 112)(92 113)(93 114)(94 115)(95 116)(96 117)(97 118)(98 119)(99 120)(100 121)(101 122)(102 123)(103 124)(104 125)(105 126)(106 127)(107 128)(108 129)(109 130)(110 131)
(1 113)(2 114)(3 115)(4 116)(5 117)(6 118)(7 119)(8 120)(9 121)(10 122)(11 123)(12 124)(13 125)(14 126)(15 127)(16 128)(17 129)(18 130)(19 131)(20 132)(21 111)(22 112)(23 95)(24 96)(25 97)(26 98)(27 99)(28 100)(29 101)(30 102)(31 103)(32 104)(33 105)(34 106)(35 107)(36 108)(37 109)(38 110)(39 89)(40 90)(41 91)(42 92)(43 93)(44 94)(45 86)(46 87)(47 88)(48 67)(49 68)(50 69)(51 70)(52 71)(53 72)(54 73)(55 74)(56 75)(57 76)(58 77)(59 78)(60 79)(61 80)(62 81)(63 82)(64 83)(65 84)(66 85)(133 169)(134 170)(135 171)(136 172)(137 173)(138 174)(139 175)(140 176)(141 155)(142 156)(143 157)(144 158)(145 159)(146 160)(147 161)(148 162)(149 163)(150 164)(151 165)(152 166)(153 167)(154 168)
(1 60 42 160)(2 61 43 161)(3 62 44 162)(4 63 23 163)(5 64 24 164)(6 65 25 165)(7 66 26 166)(8 45 27 167)(9 46 28 168)(10 47 29 169)(11 48 30 170)(12 49 31 171)(13 50 32 172)(14 51 33 173)(15 52 34 174)(16 53 35 175)(17 54 36 176)(18 55 37 155)(19 56 38 156)(20 57 39 157)(21 58 40 158)(22 59 41 159)(67 102 134 123)(68 103 135 124)(69 104 136 125)(70 105 137 126)(71 106 138 127)(72 107 139 128)(73 108 140 129)(74 109 141 130)(75 110 142 131)(76 89 143 132)(77 90 144 111)(78 91 145 112)(79 92 146 113)(80 93 147 114)(81 94 148 115)(82 95 149 116)(83 96 150 117)(84 97 151 118)(85 98 152 119)(86 99 153 120)(87 100 154 121)(88 101 133 122)

G:=sub<Sym(176)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,42)(2,43)(3,44)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,40)(22,41)(45,153)(46,154)(47,133)(48,134)(49,135)(50,136)(51,137)(52,138)(53,139)(54,140)(55,141)(56,142)(57,143)(58,144)(59,145)(60,146)(61,147)(62,148)(63,149)(64,150)(65,151)(66,152)(67,170)(68,171)(69,172)(70,173)(71,174)(72,175)(73,176)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162)(82,163)(83,164)(84,165)(85,166)(86,167)(87,168)(88,169)(89,132)(90,111)(91,112)(92,113)(93,114)(94,115)(95,116)(96,117)(97,118)(98,119)(99,120)(100,121)(101,122)(102,123)(103,124)(104,125)(105,126)(106,127)(107,128)(108,129)(109,130)(110,131), (1,113)(2,114)(3,115)(4,116)(5,117)(6,118)(7,119)(8,120)(9,121)(10,122)(11,123)(12,124)(13,125)(14,126)(15,127)(16,128)(17,129)(18,130)(19,131)(20,132)(21,111)(22,112)(23,95)(24,96)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,105)(34,106)(35,107)(36,108)(37,109)(38,110)(39,89)(40,90)(41,91)(42,92)(43,93)(44,94)(45,86)(46,87)(47,88)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76)(58,77)(59,78)(60,79)(61,80)(62,81)(63,82)(64,83)(65,84)(66,85)(133,169)(134,170)(135,171)(136,172)(137,173)(138,174)(139,175)(140,176)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168), (1,60,42,160)(2,61,43,161)(3,62,44,162)(4,63,23,163)(5,64,24,164)(6,65,25,165)(7,66,26,166)(8,45,27,167)(9,46,28,168)(10,47,29,169)(11,48,30,170)(12,49,31,171)(13,50,32,172)(14,51,33,173)(15,52,34,174)(16,53,35,175)(17,54,36,176)(18,55,37,155)(19,56,38,156)(20,57,39,157)(21,58,40,158)(22,59,41,159)(67,102,134,123)(68,103,135,124)(69,104,136,125)(70,105,137,126)(71,106,138,127)(72,107,139,128)(73,108,140,129)(74,109,141,130)(75,110,142,131)(76,89,143,132)(77,90,144,111)(78,91,145,112)(79,92,146,113)(80,93,147,114)(81,94,148,115)(82,95,149,116)(83,96,150,117)(84,97,151,118)(85,98,152,119)(86,99,153,120)(87,100,154,121)(88,101,133,122)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154)(155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,42)(2,43)(3,44)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,40)(22,41)(45,153)(46,154)(47,133)(48,134)(49,135)(50,136)(51,137)(52,138)(53,139)(54,140)(55,141)(56,142)(57,143)(58,144)(59,145)(60,146)(61,147)(62,148)(63,149)(64,150)(65,151)(66,152)(67,170)(68,171)(69,172)(70,173)(71,174)(72,175)(73,176)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162)(82,163)(83,164)(84,165)(85,166)(86,167)(87,168)(88,169)(89,132)(90,111)(91,112)(92,113)(93,114)(94,115)(95,116)(96,117)(97,118)(98,119)(99,120)(100,121)(101,122)(102,123)(103,124)(104,125)(105,126)(106,127)(107,128)(108,129)(109,130)(110,131), (1,113)(2,114)(3,115)(4,116)(5,117)(6,118)(7,119)(8,120)(9,121)(10,122)(11,123)(12,124)(13,125)(14,126)(15,127)(16,128)(17,129)(18,130)(19,131)(20,132)(21,111)(22,112)(23,95)(24,96)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,105)(34,106)(35,107)(36,108)(37,109)(38,110)(39,89)(40,90)(41,91)(42,92)(43,93)(44,94)(45,86)(46,87)(47,88)(48,67)(49,68)(50,69)(51,70)(52,71)(53,72)(54,73)(55,74)(56,75)(57,76)(58,77)(59,78)(60,79)(61,80)(62,81)(63,82)(64,83)(65,84)(66,85)(133,169)(134,170)(135,171)(136,172)(137,173)(138,174)(139,175)(140,176)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168), (1,60,42,160)(2,61,43,161)(3,62,44,162)(4,63,23,163)(5,64,24,164)(6,65,25,165)(7,66,26,166)(8,45,27,167)(9,46,28,168)(10,47,29,169)(11,48,30,170)(12,49,31,171)(13,50,32,172)(14,51,33,173)(15,52,34,174)(16,53,35,175)(17,54,36,176)(18,55,37,155)(19,56,38,156)(20,57,39,157)(21,58,40,158)(22,59,41,159)(67,102,134,123)(68,103,135,124)(69,104,136,125)(70,105,137,126)(71,106,138,127)(72,107,139,128)(73,108,140,129)(74,109,141,130)(75,110,142,131)(76,89,143,132)(77,90,144,111)(78,91,145,112)(79,92,146,113)(80,93,147,114)(81,94,148,115)(82,95,149,116)(83,96,150,117)(84,97,151,118)(85,98,152,119)(86,99,153,120)(87,100,154,121)(88,101,133,122) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154),(155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)], [(1,42),(2,43),(3,44),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(20,39),(21,40),(22,41),(45,153),(46,154),(47,133),(48,134),(49,135),(50,136),(51,137),(52,138),(53,139),(54,140),(55,141),(56,142),(57,143),(58,144),(59,145),(60,146),(61,147),(62,148),(63,149),(64,150),(65,151),(66,152),(67,170),(68,171),(69,172),(70,173),(71,174),(72,175),(73,176),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162),(82,163),(83,164),(84,165),(85,166),(86,167),(87,168),(88,169),(89,132),(90,111),(91,112),(92,113),(93,114),(94,115),(95,116),(96,117),(97,118),(98,119),(99,120),(100,121),(101,122),(102,123),(103,124),(104,125),(105,126),(106,127),(107,128),(108,129),(109,130),(110,131)], [(1,113),(2,114),(3,115),(4,116),(5,117),(6,118),(7,119),(8,120),(9,121),(10,122),(11,123),(12,124),(13,125),(14,126),(15,127),(16,128),(17,129),(18,130),(19,131),(20,132),(21,111),(22,112),(23,95),(24,96),(25,97),(26,98),(27,99),(28,100),(29,101),(30,102),(31,103),(32,104),(33,105),(34,106),(35,107),(36,108),(37,109),(38,110),(39,89),(40,90),(41,91),(42,92),(43,93),(44,94),(45,86),(46,87),(47,88),(48,67),(49,68),(50,69),(51,70),(52,71),(53,72),(54,73),(55,74),(56,75),(57,76),(58,77),(59,78),(60,79),(61,80),(62,81),(63,82),(64,83),(65,84),(66,85),(133,169),(134,170),(135,171),(136,172),(137,173),(138,174),(139,175),(140,176),(141,155),(142,156),(143,157),(144,158),(145,159),(146,160),(147,161),(148,162),(149,163),(150,164),(151,165),(152,166),(153,167),(154,168)], [(1,60,42,160),(2,61,43,161),(3,62,44,162),(4,63,23,163),(5,64,24,164),(6,65,25,165),(7,66,26,166),(8,45,27,167),(9,46,28,168),(10,47,29,169),(11,48,30,170),(12,49,31,171),(13,50,32,172),(14,51,33,173),(15,52,34,174),(16,53,35,175),(17,54,36,176),(18,55,37,155),(19,56,38,156),(20,57,39,157),(21,58,40,158),(22,59,41,159),(67,102,134,123),(68,103,135,124),(69,104,136,125),(70,105,137,126),(71,106,138,127),(72,107,139,128),(73,108,140,129),(74,109,141,130),(75,110,142,131),(76,89,143,132),(77,90,144,111),(78,91,145,112),(79,92,146,113),(80,93,147,114),(81,94,148,115),(82,95,149,116),(83,96,150,117),(84,97,151,118),(85,98,152,119),(86,99,153,120),(87,100,154,121),(88,101,133,122)]])

220 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H11A···11J22A···22BR22BS···22DF44A···44CB
order12···222224···411···1122···2222···2244···44
size11···122222···21···11···12···22···2

220 irreducible representations

dim111111111122
type+++++
imageC1C2C2C2C4C11C22C22C22C44D4D4×C11
kernelC22⋊C4×C22C11×C22⋊C4C22×C44C23×C22C22×C22C2×C22⋊C4C22⋊C4C22×C4C24C23C2×C22C22
# reps142181040201080440

Matrix representation of C22⋊C4×C22 in GL4(𝔽89) generated by

88000
08800
00730
00073
,
1000
08800
00880
00551
,
1000
0100
00880
00088
,
34000
08800
00552
00034
G:=sub<GL(4,GF(89))| [88,0,0,0,0,88,0,0,0,0,73,0,0,0,0,73],[1,0,0,0,0,88,0,0,0,0,88,55,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,88,0,0,0,0,88],[34,0,0,0,0,88,0,0,0,0,55,0,0,0,2,34] >;

C22⋊C4×C22 in GAP, Magma, Sage, TeX

C_2^2\rtimes C_4\times C_{22}
% in TeX

G:=Group("C2^2:C4xC22");
// GroupNames label

G:=SmallGroup(352,150);
// by ID

G=gap.SmallGroup(352,150);
# by ID

G:=PCGroup([6,-2,-2,-2,-11,-2,-2,1056,1081]);
// Polycyclic

G:=Group<a,b,c,d|a^22=b^2=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

׿
×
𝔽